Rational Materials Design for In Operando Electropolymerization of Evolvable Organic Electrochemical Transistors
نویسندگان
چکیده
Organic electrochemical transistors formed by in operando electropolymerization of the semiconducting channel are increasingly becoming recognized as a simple and effective implementation synapses neuromorphic hardware. However, very few studies have reported requirements that must be met to ensure polymer spreads along substrate form functional conducting channel. The nature interface between various monomer precursors polymers through molecular dynamics simulations is investigated, showing adsorption produces an increase concentration at surface. By evaluating combinatorial couples monomers baring sidechains with differently functionalized substrates, it shown interactions precursor control lateral growth film inert substrate. This effect has implications for fabricating synaptic systems on inexpensive, flexible substrates.
منابع مشابه
High transconductance organic electrochemical transistors
The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devic...
متن کاملDiffusion Driven Selectivity in Organic Electrochemical Transistors
Organic Electrochemical transistors (OECTs) present unique features for their strategic combination with biomedical interfaces, simple and low voltage operation regime and sensing ability in aqueous environment, but they still lack selectivity, so that a significant effort in research is devoted to overcome this limitation. Here, we focus on the diffusion properties of molecular species in the ...
متن کاملFast-switching all-printed organic electrochemical transistors
Symmetric and fast (~ 5 ms) on-to-off and off-to-on drain current switching characteristics have been obtained in screen printed organic electrochemical transistors (OECT) including PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid)) as the active transistor channel material. Improvement of the drain current switching characteristics is made possible by including...
متن کاملMolecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors
The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous environment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we presen...
متن کاملTextile Organic Electrochemical Transistors as a Platform for Wearable Biosensors
The development of wearable chemical sensors is receiving a great deal of attention in view of non-invasive and continuous monitoring of physiological parameters in healthcare applications. This paper describes the development of a fully textile, wearable chemical sensor based on an organic electrochemical transistor (OECT) entirely made of conductive polymer (PEDOT:PSS). The active polymer pat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Functional Materials
سال: 2022
ISSN: ['1616-301X', '1616-3028']
DOI: https://doi.org/10.1002/adfm.202202292